1.a) $B(3 \times 2) \quad(3 \times 3)(3,2)(3 \times 2)$

$$
\begin{align*}
C(3 \times 2) & \left.\begin{array}{cc}
A \bar{x} & =\bar{y} \\
(333)(3 \times 1) \\
\bar{x}(3 \times 1) & A \equiv\left[\begin{array}{lll}
a_{1} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
\bar{y}(3 \times 1) & A B
\end{array}\right)=\left[\begin{array}{lll}
a_{\mu} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{ll}
b_{\mu} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} b_{\mu}+a_{12} b_{11}+a_{13} b_{31} & a_{1} b_{12}+a_{12} b_{21}+a_{13} b_{32} \\
a_{21} b_{\mu}+a_{22} b_{21}+a_{23} b_{31} & a_{41} b_{12}+a_{22} b_{22}+a_{32} b_{32} \\
a_{31} b_{1}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}
\end{array}\right] \\
& =C=\left[\begin{array}{ll}
c_{\mu} & c_{12} \\
c_{12} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]
\end{align*}
$$

- A must be 3×3 matrix

$$
A_{\bar{x}}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{33} \\
a_{31} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{array}\right]=\bar{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
a_{11} b_{1}+a_{12} b_{11}+a_{13} b_{31}=c_{11} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}=c_{11} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}=c_{31} \\
a_{11} b_{12}+a_{12} b_{22}+a_{33} b_{32}=c_{12} \\
a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}=c_{22} \\
a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}=c_{32} \\
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=y_{1} \\
a_{31} x_{1}+a_{22} x_{2}+a_{23} x_{3}=y_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=y_{3}
\end{array}\right\}
$$

$$
\begin{aligned}
& B^{\prime}=\left[\begin{array}{ll}
B & \bar{x}
\end{array}\right]=\left[\begin{array}{lll}
b_{m} & b_{12} & x_{1} \\
b_{21} & b_{22} & x_{2} \\
b_{31} & b_{32} & x_{3}
\end{array}\right] \\
& C^{\prime}=\left[\begin{array}{ll}
C & \bar{y}
\end{array}\right]=\left[\begin{array}{lll}
c_{\mu} & c_{12} & y_{1} \\
c_{31} & c_{22} & y_{2} \\
c_{31} & c_{32} & y_{3}
\end{array}\right] \\
& \Rightarrow A B^{\prime}=C^{\prime} \quad \begin{array}{l}
\text { Ill } \\
\text { (shaw this later if } \\
\text { I have the time to, } \\
\text { probably not) }
\end{array}
\end{aligned}
$$

"the fran the question, we assume, that all square matrices are invertible. All matrices A, B^{\prime} and C^{\prime} are (3×3), therefore, square, matrices.
We can then post-multiply both sides by the inverse of $B^{\prime},\left(B^{\prime}\right)^{-1}$ arriving to

$$
A B^{\prime}\left(B^{\prime}\right)^{-1}=C^{\prime}\left(B^{\prime}\right)^{-1}, B^{\prime}\left(B^{\prime}\right)^{-1}=I \text {, }
$$

therefore $A=C^{\prime}\left(B^{\prime}\right)^{-1}$. After finding nurse of B^{\prime}, we just multiply it with C^{\prime} and the result will be matrix A.
b)

$$
\begin{aligned}
& B=\left[\begin{array}{cc}
1 & 0 \\
-5 & 1 \\
0 & 0
\end{array}\right] \\
& C=\left[\begin{array}{cc}
3 & 1 \\
5 & 5 \\
1 & -1
\end{array}\right] \\
& \bar{x}=\left[\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right] \\
& \bar{y}=\left[\begin{array}{l}
7 \\
4 \\
3
\end{array}\right]
\end{aligned}
$$

2. a) $\overline{V_{1}}=\left[\begin{array}{c}4 \\ 5 \\ -9\end{array}\right], \bar{V}_{2}=\left[\begin{array}{c}3 \\ 2 \\ -7\end{array}\right], \bar{V}_{3}=\left[\begin{array}{c}-3 \\ 5 \\ 8\end{array}\right]$

These vectors are linearly independent if the matrix. $A=\left[\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right]$ is nonsingluar, which is the case if and only if $\operatorname{det}(A) \neq 0$. Therefore, we need to calculate $\operatorname{det}(A)$.

To determine whether these 3 vectors are basis of \mathbb{D}^{3}, we just need to check if they're linearly independent because:

1) elements of basis must be Sins independent
2, any 3 linearly independent vectors form a basis of \mathbb{R}^{3}.

$$
\begin{aligned}
\operatorname{det}(A)=\left|\begin{array}{ccc}
4 & 3 & -3 \\
5 & 2 & 5 \\
-9 & -7 & 8
\end{array}\right| & =4\left|\begin{array}{cc}
2 & 5 \\
-7 & 8
\end{array}\right|-5\left|\begin{array}{cc}
-3 & -3 \\
\text { ned } & 8
\end{array}\right|-9\left|\begin{array}{cc}
3 & -3 \\
2 & 5
\end{array}\right|=4(16+35)-5(24-21)-9(15+6)= \\
& =204-15-189=0
\end{aligned}
$$

$\operatorname{det}(A)=0$, therefore the 3 vectors aren't linearly independent, therefore. they cannot form a basis of \mathbb{R}^{3}.

So, No
12

$$
\begin{aligned}
& A=C^{\prime}\left(B^{\prime}\right)^{-1} \quad \text { To find }\left(B^{\prime}\right)^{-1}: \\
& \left(\mathcal{B}^{\prime} \mid I\right)=\left[\begin{array}{ccc|ccc}
1 & 0 & 4 & 1 & 0 & 0 \\
-5 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 4 & 5 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 4 \\
0 & 1 & 0 & 5 & 1 & 2 \\
0 & 0 & 1 & 0 & 0 & -1
\end{array}\right] \\
& \left(B^{\prime}\right)^{-1}=\left[\begin{array}{ccc}
1 & 0 & 4 \\
5 & 1 & 2 A \\
0 & 0 & -1
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
3 & 1 & 7 \\
5 & 5 & 4 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 4 \\
5 & 1 & 21 \\
0 & 0 & -1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
3+5 & 1 & 12+2 x-7 \\
5+25 & 5 & 20+105-4 \\
1-5 & -1 & 4-21-3
\end{array}\right]=\left[\begin{array}{ccc}
8 & 1 & 26 \\
30 & 5 & 121 \\
-4 & -1 & -20
\end{array}\right]
\end{aligned}
$$

b) $\bar{V}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right] \quad \bar{V}_{2}=\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ 0\end{array}\right] \quad \bar{V}_{3}=\left[\begin{array}{c}0 \\ 0 \\ -6 \\ 5\end{array}\right] \quad \bar{V}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

To determine whether these 14 vectors form a basis of \mathbb{D}^{4}, we check if they'ne linearly independent (elements forming basis must be lin. indep. and any 4 lin. indep. vectors in $V^{4} R^{4}$ span \mathbb{R}^{4}, therefore form a basis of \mathbb{R}^{4}).
This can be checked again using the determinant of $B=\left[\begin{array}{llll}\overline{V_{1}} & \bar{v}_{2} & v_{3} & \bar{v}_{4}\end{array}\right]$
\Rightarrow therefore, the vectors are linearly independent and form
$B^{-1}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 0 & 0 & -\frac{1}{6} & 0 \\ 0 & 0 & \frac{5}{6} & 1\end{array}\right] \begin{aligned} & \text { is the transition matrix } \\ & \text { from basis } E=\left\{\bar{e}_{1}, \overline{e_{2}}, \bar{e}_{3}, \overline{e_{4}}\right\} \\ & \text { to the basis } V=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{v}_{4}\right\}\end{aligned}$

$$
[\bar{x}]_{E}=\left[\begin{array}{c}
2 \\
-1 \\
4 \\
0
\end{array}\right]_{E}
$$

$$
\begin{aligned}
& \text { to the basis } V=\left\{\begin{array}{l}
\left\{\bar{v}_{1}, \bar{v}_{2}, v_{3}, v_{4}\right.
\end{array}\right\} \\
& {[\bar{x}]_{V}=B^{-1}[\bar{x}]_{E}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -2 & 0 \\
0 & 0 \\
0 & 0 & -\frac{1}{0} \\
0 & 0 & \frac{5}{5}
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
4 \\
-\frac{2}{3} \\
-\frac{20}{6}
\end{array}\right]_{V}=\left[\begin{array}{c}
3 \\
4 \\
-\frac{2}{3} \\
\frac{10}{3}
\end{array}\right] V}
\end{aligned}
$$

$$
=\frac{3 v_{1}+4 v_{2}-\frac{2}{3} \bar{v}_{3}+\frac{10}{3} \bar{v}_{4}=3\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0
\end{array}\right]-\frac{2}{3}\left[\begin{array}{c}
0 \\
0 \\
-6 \\
5
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]}{\text { of be could also be fond using the properteres }}
$$

\Varangle The inverse of be could also be fond using the properties

$$
\begin{aligned}
& {[\bar{x}]_{E}=B[\bar{x}]_{V} \Rightarrow B=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & -6 & 0 \\
0 & 0 & 5 & 1
\end{array}\right]} \\
& \text { is the transition matrix } \\
& \text { fem basis } V=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{v}_{4}\right\} \\
& \text { to the elementary basis } E \text {. } \\
& B^{-1}[\bar{x}]_{E}=[\bar{x}]_{V}
\end{aligned}
$$

3.

a)

$$
\begin{array}{ll}
\begin{array}{l}
\text { a) } \\
u_{1}
\end{array}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right] & , \bar{u}_{2}=\left[\begin{array}{c}
-5 / 2 \\
0 \\
1
\end{array}\right] \\
3 x_{1}-\frac{5}{2} x_{2}=0 \\
x_{1}+0 x_{2}=0 \\
x_{1}+x_{2}=0
\end{array} \quad\left[\begin{array}{ll:l}
3 & -\frac{5}{2} & 0 \\
1 & 0 & 0 \\
0 & 1 & 10
\end{array}\right]
$$

The two vectors are linearly independent if the homogeneous system $U \bar{x}=\overline{0}$ has

$$
3 x_{1}-\frac{5}{2} x_{2}=0
$$ only a trivial solution.

$$
0 x_{1}+x_{2}=0
$$

$\Rightarrow \begin{aligned} & x_{1}=0 \\ & x_{2}=0\end{aligned} \Rightarrow$ the only solution is the trivial solution, therefore they are lin. independent.
b)

$$
\begin{aligned}
& \bar{V}=\alpha \bar{u}_{1}+\beta \bar{u}_{2}=\alpha\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
-5 / 2 \\
0 \\
1
\end{array}\right] \\
& \bar{V}=\left[\begin{array}{c}
3 \alpha-\frac{5}{2} \beta \\
\alpha \\
\beta
\end{array}\right]
\end{aligned}
$$

C) vector perpendicular to the plane can be found by calculating a cross-product of two vectors defining the plane. For example \bar{u}_{1} and \bar{u}_{2} :

$$
\begin{aligned}
& \text { For example } \bar{u}_{1} \text { and } \bar{u}_{2}: \\
& \bar{u}_{1} \times \bar{u}_{2}=\operatorname{det}\left[\begin{array}{ccc}
\bar{e}_{1} & \overline{e_{2}} & \bar{e}_{3} \\
3 & 1 & 0 \\
-5 / 2 & 0 & 1
\end{array}\right]=e_{1} \cdot 1-\bar{e}_{2} \cdot 3+\bar{e}_{3} \frac{5}{2}=\left[\begin{array}{c}
1 \\
-3 \\
5 / 2
\end{array}\right]
\end{aligned}
$$

(All vectors perpendicular to this plane lie on a line passing
K (through the origin (as all vectors start in origins).
Therefore: $\bar{W}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}1 \\ -3 \\ 5 / 2\end{array}\right], t \in \mathbb{K} \backslash\{0\}$, where \bar{w} is a general Missing unit vector (-0.2) the plane from question.

Or using dot product:

$$
\begin{aligned}
& \left.\frac{\text { dat product: }}{u_{1}^{\top} \cdot \bar{w}=0} \begin{array}{lll}
3 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=3 w_{1}+w_{2}=0 \quad\left[\begin{array}{ccc:c}
3 & 1 & 0 & 0 \\
-5 / 2 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

K Note an parametric solution: we're solving a hamageneons system in the first place here (equations tram sot product), thenerfere \bar{x} o (particielor solution of $\left.A \bar{x}=\bar{b}=\bar{\theta} \left\lvert\, \begin{array}{l}15 \\ 0 \\ 0 \\ 0\end{array}\right.\right]$. That's why there's $\left[\begin{array}{l}8 \\ 0\end{array}\right]$ 4 in the result.
4. $f_{1}(x)=x \quad \in C^{2}[0, \pi]$
a) $f_{1}(x)=\sin (x)$

$$
f_{3}(x)=\cos (x)
$$

\rightarrow Build a matrix

$$
\begin{aligned}
& T]
\end{aligned} \quad\left[\begin{array}{ccc}
x & \sin (x) & \cos (x) \\
1 & \cos (x) & -\sin (x) \\
0 & -\sin (x) & -\cos (x)
\end{array}\right]
$$

Theorem about Wronskin says that if there $\exists x_{0} \in[0, \pi]$ where the Wronskin of $R_{1}, f_{2}, f_{3} \neq 0$, then they ane lin. independent.

$$
W\left[\left[f_{1}, f_{2}, f_{3}\right]=x \cdot\left|\begin{array}{cc}
\cos (x) & -\sin (x) \\
-\sin (x) & -\cos (x)
\end{array}\right|-\left|\begin{array}{cc}
\sin (x) & \cos (x) \\
-\sin (x) & -\cos (x)
\end{array}\right|=\right.
$$

Griskin
\sim deft α
matrix
above

$$
\begin{aligned}
& =x\left[-\cos ^{2}(x)-\sin ^{2}(x)\right]-[-\sin (x) \cdot \cos (x)+\sin (x) \cdot \cos (x)]= \\
& {\left[-2(x)+\cos ^{2}(x)\right]-0=-x \cdot 1=-x}
\end{aligned}
$$

$$
\begin{aligned}
& =x\left[-\cos ^{2}(x)+\cos ^{2}(x)\right]-0=-x \cdot 1=-x \\
& =-x\left[\sin ^{2}(x)+\sin ^{2} x+\cos ^{2} x=1\right]
\end{aligned}
$$

$W\left[f_{1}, f_{2}, \overline{f_{3}}\right]=-x \Rightarrow$ for any chosen x_{0} fran $(0, \pi]$ (excluding θ),
G lets pick $x_{0}=1$
$\Rightarrow W\left[f_{1}, f_{2}, f_{3}\right]=-1 \quad$ will be linearly independent.
b) $p(x)=a$

$$
q(x)=2 x+4
$$

$$
\begin{aligned}
& =-x \Rightarrow \text { for any chosen } x=\left[\begin{array}{c}
\text { will the wronskin } \neq 0 \Rightarrow \text { functions } G_{1}, f_{2}, f_{3} \\
\text { will be linearly independent. } \\
=-1 \\
P=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right]
\end{array}\right\} \begin{array}{l}
\text { w.r.t.) Standardened basis }\left\{1, x, x^{2}\right\} \text { of } P_{3} \\
\Rightarrow \text { linearly indecondert andy if }
\end{array}
\end{aligned}
$$

$$
\left.\left[\begin{array}{ccc}
a & 4 & 0 \\
0 & 2 & 0 \\
0 & 0 & a-1
\end{array}\right]=a \cdot 2 \cdot(a-1)=2 a(a-1)\right]
$$

will the Wronskin $\neq 0 \Rightarrow$ functions f_{1}, f_{2}, f_{3}
\Rightarrow linearly independent only if

$$
r(x)=(a-1) x^{2}
$$

$$
q=\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right]
$$

$c_{1} \cdot a+c_{2}(2 x+4)+c_{3}(a-1) x^{2}=0+0 x+0 x^{2}$
$c^{2} l y$ in why in cares of. $c_{1}, c_{2}, c_{3}=0$.

$$
\left.r=\left[\begin{array}{c}
0 \\
0 \\
a-1
\end{array}\right]\right]
$$

Trapper) triangular \Rightarrow determinant $=$ product of diagonal
$d r(x)$ are linearly independent. when $2 a(a-1) \neq 0$, then $\rho(x), q(x)$ and Fhefone, the rectors are linearly
5 when $2 a(a-1) \neq 0$, then $10 \not a \neq 1$. Therefore, the vectors \quad independendent for all $a \in \mathbb{R} \backslash\{0,1\}$
5. Groningen $\rightarrow 60 \% \mathrm{G}, 20 \% \mathrm{~A}, 20 \% \mathrm{H}$

Aspen $\rightarrow 0 \% G, 70 \% \mathrm{~A}, 30 \% \mathrm{H}$
Hanen $\rightarrow 0 \% 6,0 \% \mathrm{~A}, 100 \% \mathrm{H}$
8.12.2020: $G: 600$ books

A: 200 books
$H: 500$ books

$$
\Rightarrow\left[\begin{array}{l}
600 \\
200 \\
500
\end{array}\right] \equiv b_{0}
$$

a) $10.12 .2080 \cdot$?

After 1 day: $b_{1}=A b_{0}$ number of
number of books after 1 day After n days: $b_{n}=A^{n} b_{0}$
b) 7.12 .20120 ??

$$
\text { b) } b_{0}=A b_{-1}
$$

on 84218020 'books on libraries y an a precious dory

We can build a matrix showing these changes:

$$
\left[\begin{array}{ccc}
\downarrow & \downarrow & 1 \\
0.6 & 0 & 0 \\
0.2 & 0.7 & 0 \\
0.2 & 0.3 & 1
\end{array}\right] \equiv A
$$

L) note that it's franspored compared to the first diagram and dene's no \% sign

